Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
FASEB J ; 38(6): e23551, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38489235

RESUMO

Inflammation is a significant pathological manifestation of inflammatory bowel disease (IBD), yet its mechanism has remained unclear. Although WNT2B is enriched in the intestinal inflammatory tissue of IBD patients, the specific mechanism of WNT2B in the formation of intestinal inflammation remains unclear. This study was aimed to investigate whether macrophages expressing WNT2B can aggravate intestinal tissue inflammation. Samples were collected from both normal individuals and patients with IBD at multiple colon sites. Macrophages were identified using tissue immunofluorescence. IκB kinase (IKK)-interacting protein (IKIP), which interacts with WNT2B, was found by protein cross-linking and protein mass spectrometry. The expression of WNT2B, IKIP, the NF-κB pathway, and downstream molecules were analyzed. An acute colitis model of C57BL/6J mice was established using an adeno-associated virus (AAV)-mediated WNT2B knockdown system and 3% dextran sulfate sodium (DSS). The degree of intestinal inflammation in mice was assessed upon WNT2B knockdown in macrophages. Macrophages expressing WNT2B were found to be enriched in the colitis tissues of IBD patients. WNT2B in macrophages activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines. By competitively binding IKIP, WNT2B reduced the binding of IKIP to IKKß and promoted the activation of the NF-κB pathway. Using an AAV-mediated WNT2B knockdown system, WNT2B expression in intestinal macrophages was suppressed, leading to a reduction in intestinal inflammation. WNT2B activated the NF-κB pathway and enhanced the expression of downstream inflammatory cytokines by competitively binding to IKIP, potentially contributing to colon inflammatory injury in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Doenças Inflamatórias Intestinais/metabolismo , Colite/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Sulfato de Dextrana , Glicoproteínas/metabolismo , Proteínas Wnt/metabolismo
2.
Turk J Gastroenterol ; 35(1): 41-47, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454276

RESUMO

BACKGROUND/AIMS: The aim of this study was to explore the risk factors for the incidence of gastroscopy-assisted capsule endoscopy and the small bowel transit time in pediatric patients who underwent capsule endoscopy examination. MATERIALS AND METHODS: A retrospective analysis was performed to analyze the clinical data collected from pediatric patients who underwent capsule endoscopy examination. RESULTS: A total of 239 pediatric patients were enrolled in this study. About 196 (82.0%) patients completed the entire small bowel capsule endoscopy examination, while 3 (1.3%) patients were subjected to capsule retention. Only age, not gender, height, body weight, body mass index, chief complaint, and intestinal preparation medications, has been identified as a risk factor for the incidence of gastroscopy-assisted capsule endoscopy (P < .05) by multivariate logistic regression. Further analysis showed that the small bowel transit time in the self-swallowed group was shorter than that in the gastroscopy-assisted group, while no significant difference was obtained in other factors, including intestinal preparation medications, metoclopramide, and lesions in the small intestine, which did not significantly affect small bowel transit time compared with the corresponding control group (P > .05). CONCLUSION: A comprehensive assessment is required before performing capsule endoscopy, because age has been identified as a critical risk factor for the incidence of gastroscopy-assisted capsule endoscopy in pediatric patients.


Assuntos
Endoscopia por Cápsula , Humanos , Criança , Estudos Retrospectivos , Gastroscopia , Intestino Delgado/patologia , Fatores de Risco
3.
J Glob Health ; 14: 05011, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271211

RESUMO

Background: With the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in schools and communities, clinical evidence is needed to determine the impact of the pandemic and public health interventions under the zero coronavirus disease policy on the occurrence of common infectious diseases and non-infectious diseases among children. Methods: The current study was designed to analyse the occurrence of common infectious diseases before and after the pandemic outbreak in southern China. Data was obtained for 1 801 728 patients admitted into children's hospitals in Guangzhou between January 2017 and July 2022. Regression analysis was performed for data analysis. Results: The annual occurrence of common paediatric infectious diseases remarkably decreased after the pandemic compared to the baseline before the pandemic and the monthly occurrence. Cases per month of common paediatric infectious diseases were significantly lower in five periods during the local outbreak when enhanced public health measures were in place. Cases of acute non-infectious diseases such as bone fractures were not reduced. Non-pharmaceutical interventions decreased annual and monthly cases of paediatric respiratory and intestinal infections during the coronavirus disease 2019 (COVID-19) pandemic, especially when enhanced public health interventions were in place. Conclusions: Our findings provide clinical evidence that public health interventions under the dynamic zero COVID policy in the past three years had significant impacts on the occurrence of common respiratory and intestinal infectious diseases among children and adolescents but little impact on reducing non-infectious diseases such as leukaemia and bone fracture.


Assuntos
COVID-19 , Doenças Transmissíveis , Doenças não Transmissíveis , Adolescente , Humanos , Criança , COVID-19/epidemiologia , SARS-CoV-2 , Saúde Pública , Políticas , China/epidemiologia
4.
Life Sci ; 337: 122348, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103725

RESUMO

Our previous work has demonstrated protein kinase D2 (PKD2) played a critical influence in experimental colitis in animal. However, the role of PKD2 in human norovirus (HuNoVs)-induced diarrhea remained unknown. Aquaporin 3 (AQP3) expression, a critical protein mediating diarrhea, was assessed by western blot, qRT-PCR in intestinal epithelial cells (IECs). Luciferase, IF, IP and ChIP assay were used to explore the mechanism through which HuNoVs regulated AQP3. Herein, we found that AQP3 expression was drastically decreased in IECs in response to VP1 transfection, the major capsid protein of HuNoVs, or HuNoVs infection. Mechanistically, HuNoVs triggered phosphorylation of PKD2 through TLR2/MyD88/IRAK4, which further inhibited AP2γ activation and nuclear translocation, leading to suppress AQP3 transactivation in IECs. Most importantly, PKD2 interacted with MyD88/IRAK4, and VP1 overexpression enhanced this complex form, which, in turn, to increase PKD2 phosphorylation. In addition, endogenous PKD2 interacted with AP2γ, and this interaction was enhanced in response to HuNoVs treatment, and subsequently resulting in AP2γ phosphorylation inhibition. Moreover, inhibition of PKD2 activation could reverse the inhibitory effect of HuNoVs on AQP3 expression. In summary, we established a novel mechanism that HuNoV inhibited AQP3 expression through TLR2/MyD88/IRAK4/PKD2 signaling pathway, targeting PKD2 activity could be a promising strategy for prevention of HuNoVs-induced gastroenteritis.


Assuntos
Norovirus , Proteína Quinase D2 , Animais , Humanos , Aquaporina 3/genética , Aquaporina 3/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Norovirus/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Células Epiteliais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Diarreia
5.
Turk J Gastroenterol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966265

RESUMO

BACKGROUND/AIMS: The aim of this study was to explore the risk factors for the incidence of gastroscopy-assisted capsule endoscopy and the small bowel transit time in pediatric patients who underwent capsule endoscopy examination. MATERIALS AND METHODS: A retrospective analysis was performed to analyze the clinical data collected from pediatric patients who underwent capsule endoscopy examination. RESULTS: A total of 239 pediatric patients were enrolled in this study. About 196 (82.0%) patients completed the entire small bowel capsule endoscopy examination, while 3 (1.3%) patients were subjected to capsule retention. Only age, not gender, height, body weight, body mass index, chief complaint, and intestinal preparation medications, has been identified as a risk factor for the incidence of gastroscopy-assisted capsule endoscopy (P < .05) by multivariate logistic regression. Further analysis showed that the small bowel transit time in the self-swallowed group was shorter than that in the gastroscopy-assisted group, while no significant difference was obtained in other factors, including intestinal preparation medications, metoclopramide, and lesions in the small intestine, which did not significantly affect small bowel transit time compared with the corresponding control group (P > .05). CONCLUSION: A comprehensive assessment is required before performing capsule endoscopy, because age has been identified as a critical risk factor for the incidence of gastroscopy-assisted capsule endoscopy in pediatric patients.

6.
Front Immunol ; 14: 1270411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022496

RESUMO

Background: Inflammatory bowel disease (IBD) is a chronic immune-mediated disorder affecting millions worldwide. Due to the complexity of its pathogenesis, the treatment options for IBD are limited. This study focuses on ELF4, a member of the ETS transcription factor family, as a target to elucidate its role in IBD and investigate its mechanism of action in alleviating IBD symptoms by activating IL1RN transcription to suppress the activity of inflammatory TH17 cells. Methods: Using the GEO database, this study examined LPS-induced intestinal inflammatory genes and their regulation mechanisms. We examined the colon length of LPS-treated mice and derived the Disease Activity Index (DAI). H&E staining, ELISA, and flow cytometry were used to detect mice colon tissue damage, inflammatory factor levels in mouse serum, mouse macrophage types and inflammatory TH17 cell activity. RT-qPCR and Western blot detected ELF4, IL1RN, M1, and M2 polarization markers. In Vitro, using dual-luciferase and ChIP assays, we tested mouse bone marrow-derived macrophages (BMDMs) and mouse intestinal epithelial cells for IL1RN promoter activity and ELF4 enrichment. Results: Bioinformatics showed that LPS-induced colitis animals have reduced ELF4 expression in their colon tissue. In vivo tests confirmed reduced ELF4 expression in mice with LPS-induced colitis. ELF4 overexpression reduced mouse intestinal inflammation. ELF4 activated IL1RN transcription in bioinformatics and in vitro tests. ELF4 promoted IL1RN transcription and macrophage M2 polarization to limit intestinal epithelial cell death and inflammation and reduce mouse intestinal inflammation in vitro. ELF4 also reduced the Th17/Treg ratio by increasing IL1RN transcription. Conclusion: ELF4 activates IL1RN transcription, suppresses inflammatory TH17 cells, and induces macrophage M2 polarization to treat IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Diferenciação Celular/genética , Colite/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/metabolismo , Células Th17 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
BMC Pediatr ; 23(1): 529, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880614

RESUMO

INTRODUCTION: Self-limited infantile epilepsy (SeLIE) is a benign epilepsy. Previous studies have shown that monotherapy with most antiseizure medications can effectively relieve seizures in patients with SeLIE, but the efficacy of levetiracetam has not been investigated. OBJECTIVE: This study aimed to investigate the efficacy of levetiracetam in the treatment of SeLIE patients with PRRT2 mutations. METHODS: The clinical data of 39 SeLIE patients (21 males and 18 females, aged 4.79 ± 1.60 months) with pathogenic variants in PRRT2 or 16p11.2 microdeletion were retrospectively analyzed. Based on the use of initial antiseizure medication (ASM), the patients were classified into two groups: Levetiracetam group (LEG) and Other ASMs group (OAG). The difference of efficacy between the two groups was compared. RESULTS: Among the 39 SeLIE patients, 16 were LEG (10 males and 6 females, aged 5.25 ± 2.07 months), with whom two obtained a seizure-free status (12.50%) and 14 ineffective or even deteriorated (87.50%). Among the 14 ineffective or deteriorated cases, 13 were seizure-controlled after replacing levetiracetam with other ASMs including topiramate, oxcarbazepine, lamotrigine, and valproate, and the remaining one finally achieved remission at age 3. Of the 39 patients, 23 were OAG (11 males and 12 females; aged 4.48 ± 1.12 months), of whom 22 achieved seizure remission, except for one patient who was ineffective with topiramate initially and relieved by oxcarbazepine instead. Although there were no significant differences in gender and age of onset between the two groups, the effective rate was significantly different (12.50% in LEG vs. 95.65% in OAG) (P < 0.01). CONCLUSION: The findings showed that patients with SeLIE caused by the PRRT2 mutations did not benefit from the use of levetiracetam, but could benefit from other ASMs.


Assuntos
Epilepsia , Pré-Escolar , Feminino , Humanos , Masculino , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Levetiracetam/uso terapêutico , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Oxcarbazepina , Estudos Retrospectivos , Convulsões/tratamento farmacológico , Topiramato/uso terapêutico , Lactente
8.
Mediators Inflamm ; 2023: 6623329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501933

RESUMO

Objective: Vitronectin (VTN) has been reported to trigger cell pyroptosis to aggravate inflammation in our previous study. However, the function of VTN in inflammatory bowel disease (IBD) remains to be addressed. Methods: Real-time PCR and western blotting were performed to analyze VTN-regulated intestinal epithelial cell (IEC) differentiation through ferroptosis, and immunofluorescence (IF), luciferase, and chromatin immunoprecipitation were used to identify whether VTN-modulated ferroptosis is dependent on phosphodiesterase 4 (PDE4)/protein kinase A (PKA)/cyclic adenosine monophosphate-response element-binding protein (CREB) cascade pathway. In vivo experiment in mice and a pilot study in patients with IBD were used to confirm inhibition of PDE4-alleviated IECs ferroptosis, leading to cell differentiation during mucosal healing. Results: Herein, we found that caudal-related homeobox transcription factor 2-mediated IECs differentiation was impaired in response to VTN, which was attributed to enhanced ferroptosis characterized by decreased glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 expression. Inhibition of ferroptosis in IECs rescued the inhibitory effect of VTN on cell differentiation. Further analysis showed that VTN triggered phosphorylation of PDE4, leading to inhibit PKA/CREB activation and CREB nuclear translocation, which further reduced GPX4 transactivation. Endogenous PKA interacted with CREB, and this interaction was destroyed in response to VTN stimulation. What is more, overexpression of CREB in CaCO2 cells overcame the promotion of VTN on ferroptosis. Most importantly, inhibition of PDE4 by roflumilast or dipyridamole could alleviate dextran sulfate sodium-induced colitis in mice and in a pilot clinical study confirmed by IF. Conclusions: These findings demonstrated that highly expressed VTN disrupted IECs differentiation through PDE4-mediated ferroptosis in IBD, suggesting targeting PDE4 could be a promising therapeutic strategy for patients with IBD.


Assuntos
Ferroptose , Doenças Inflamatórias Intestinais , Camundongos , Animais , Vitronectina , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Projetos Piloto , Doenças Inflamatórias Intestinais/metabolismo , Diferenciação Celular
9.
Mediterr J Hematol Infect Dis ; 15(1): e2023040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435035

RESUMO

Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal diseases that are characterized by ineffective bone marrow hematopoiesis. Since studies have confirmed the significance of miRNAs in ineffective hematopoiesis in MDS, the current report elucidated the mechanism mediated by miR-155-5p. The bone marrow of MDS patients was collected to detect miR-155-5p and to analyze the correlation between miR-155-5p and clinicopathological variables. Isolated bone marrow CD34+ cells were transfected with lentiviral plasmids that interfere with miR-155-5p, followed by apoptosis analysis. Finally, miR-155-5p-targeted regulation of RAC1 expression was identified, as well as the interaction between RAC1 and CREB, the co-localization of RAC1 and CREB, and the binding of CREB to miR-15b. As measured, miR-155-5p was upregulated in the bone marrow of MDS patients. Further cell experiments validated that miR-155-5p promoted CD34+ cell apoptosis. miR-155-5p could reduce the transcriptional activity of miR-15b by inhibiting RAC1, dissociating the interaction between RAC1 and CREB, and inhibiting the activation of CREB. Upregulating RAC1, CREB, or miR-15b could reduce miR-155-5p-mediated apoptosis promotion on CD34+ cells. Additionally, miR-155-5p could force PD-L1 expression, and this effect was impaired by elevating RAC1, CREB, or miR-15b. In conclusion, miR-155-5p mediates PD-L1-mediated apoptosis of CD34+ cells in MDS by RAC1/CREB/miR-15b axis, thereby inhibiting bone marrow hematopoiesis.

10.
Signal Transduct Target Ther ; 8(1): 236, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37332010

RESUMO

T lymphopenia, occurring in the early phase of sepsis in response to systemic inflammation, is commonly associated with morbidity and mortality of septic infections. We have previously shown that a sufficient number of T cells is required to constrain Toll-like receptors (TLRs) mediated hyperinflammation. However, the underlying mechanisms remains unsolved. Herein, we unveil that CD4+ T cells engage with MHC II of macrophages to downregulate TLR pro-inflammatory signaling. We show further that the direct contact between CD4 molecule of CD4+ T cells or the ectodomain of CD4 (soluble CD4, sCD4), and MHC II of resident macrophages is necessary and sufficient to prevent TLR4 overactivation in LPS and cecal ligation puncture (CLP) sepsis. sCD4 serum concentrations increase after the onset of LPS sepsis, suggesting its compensatory inhibitive effects on hyperinflammation. sCD4 engagement enables the cytoplasmic domain of MHC II to recruit and activate STING and SHP2, which inhibits IRAK1/Erk and TRAF6/NF-κB activation required for TLR4 inflammation. Furthermore, sCD4 subverts pro-inflammatory plasma membrane anchorage of TLR4 by disruption of MHC II-TLR4 raft domains that promotes MHC II endocytosis. Finally, sCD4/MHCII reversal signaling specifically interferes with TLR4 but not TNFR hyperinflammation, and independent of the inhibitive signaling of CD40 ligand of CD4+ cells on macrophages. Therefore, a sufficient amount of soluble CD4 protein can prevent excessive inflammatory activation of macrophages via alternation of MHC II-TLR signaling complex, that might benefit for a new paradigm of preventive treatment of sepsis.


Assuntos
Antígenos CD4 , Sepse , Humanos , Antígenos CD4/metabolismo , Receptor 4 Toll-Like/genética , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Sepse/genética , Sepse/metabolismo , Inflamação/metabolismo
11.
Cell Commun Signal ; 21(1): 141, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328804

RESUMO

BACKGROUND: Metabolic reprogramming is a critical event for cell fate and function, making it an attractive target for clinical therapy. The function of metabolic reprogramming in Helicobacter pylori (H. pylori)-infected gastric intestinal metaplasia remained to be identified. METHODS: Xanthurenic acid (XA) was measured in gastric cancer cells treated with H. pylori or H. pylori virulence factor, respectively, and qPCR and WB were performed to detect CDX2 and key metabolic enzymes expression. A subcellular fractionation approach, luciferase and ChIP combined with immunofluorescence were applied to reveal the mechanism underlying H. pylori mediated kynurenine pathway in intestinal metaplasia in vivo and in vitro. RESULTS: Herein, we, for the first time, demonstrated that H. pylori contributed to gastric intestinal metaplasia characterized by enhanced Caudal-related homeobox transcription factor-2 (CDX2) and mucin2 (MUC2) expression, which was attributed to activation of kynurenine pathway. H. pylori promoted kynurenine aminotransferase II (KAT2)-mediated kynurenine pathway of tryptophan metabolism, leading to XA production, which further induced CDX2 expression in gastric epithelial cells. Mechanically, H. pylori activated cyclic guanylate adenylate synthase (cGAS)-interferon regulatory factor 3 (IRF3) pathway in gastric epithelial cells, leading to enhance IRF3 nuclear translocation and the binding of IRF3 to KAT2 promoter. Inhibition of KAT2 could significantly reverse the effect of H. pylori on CDX2 expression. Also, the rescue phenomenon was observed in gastric epithelial cells treated with H. pylori after IRF3 inhibition in vitro and in vivo. Most importantly, phospho-IRF3 was confirmed to be a clinical positive relationship with CDX2. CONCLUSION: These finding suggested H. pylori contributed to gastric intestinal metaplasia through KAT2-mediated kynurenine pathway of tryptophan metabolism via cGAS-IRF3 signaling, targeting the kynurenine pathway could be a promising strategy to prevent gastric intestinal metaplasia caused by H. pylori infection. Video Abstract.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição CDX2/metabolismo , Helicobacter pylori/metabolismo , Cinurenina/metabolismo , Mucosa Gástrica/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Triptofano/metabolismo , Neoplasias Gástricas/metabolismo , Metaplasia/metabolismo , Nucleotidiltransferases/metabolismo , Infecções por Helicobacter/metabolismo
12.
Vaccines (Basel) ; 11(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37243097

RESUMO

Norovirus infection is the leading cause of foodborne gastroenteritis worldwide, causing more than 200,000 deaths each year. As a result of a lack of reproducible and robust in vitro culture systems and suitable animal models for human norovirus (HuNoV) infection, the pathogenesis of HuNoV is still poorly understood. In recent years, human intestinal enteroids (HIEs) have been successfully constructed and demonstrated to be able to support the replication of HuNoV. The NLRP3 inflammasome plays a key role in host innate immune responses by activating caspase1 to facilitate IL-1ß and IL-18 secretion and N-GSDMD-driven apoptosis, while NLRP3 inflammasome overactivation plays an important role in the development of various inflammatory diseases. Here, we found that HuNoV activated enteric stem cell-derived human intestinal enteroids (HIEs) NLRP3 inflammasome, which was confirmed by transfection of Caco2 cells with full-length cDNA clones of HuNoV. Further, we found that HuNoV non-structural protein P22 activated the NLRP3 inflammasome and then matured IL-1ß and IL-18 and processed the cleavage of gasdermin-D (GSDMD) to N-GSDMD, leading to pyroptosis. Besides, berberine (BBR) could ameliorate the pyroptosis caused by HuNoV and P22 by inhibiting NLRP3 inflammasome activation. Together, these results reveal new insights into the mechanisms of inflammation and cell death caused by HuNoV and provide potential treatments.

13.
World J Pediatr ; 19(10): 939-948, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37022658

RESUMO

BACKGROUND: Good quality of care for inflammatory bowel disease (IBD) depends on high-standard management and facility in the IBD center. Yet, there are no clear measures or criteria for evaluating pediatric IBD (PIBD) center in China. The aim of this study was to develop a comprehensive set of quality indicators (QIs) for evaluating PIBD center in China. METHODS: A modified Delphi consensus-based approach was used to identify a set of QIs of structure, process, and outcomes for defining the criteria. The process included an exhaustive search using complementary approaches to identify potential QIs, and two web-based voting rounds to select the QIs defining the criteria for PIBD center. RESULTS: A total of 101 QIs (35 structures, 48 processes and 18 outcomes) were included in this consensus. Structure QIs focused on the composition of multidisciplinary team, facilities and services that PIBD center should provide. Process QIs highlight core requirements in diagnosing, evaluating, treating PIBD, and disease follow-up. Outcome QIs mainly included criteria evaluating effectiveness of various interventions in PIBD centers. CONCLUSION: The present Delphi consensus developed a set of main QIs that may be useful for managing a PIBD center. Video Abstract.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Criança , Consenso , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/terapia , China
14.
Front Pediatr ; 11: 1063558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090924

RESUMO

Background: Echovirus type 11(E-11) can cause fatal haemorrhage-hepatitis syndrome in neonates. This study aims to investigate clinical risk factors and early markers of E-11 associated neonatal haemorrhage-hepatitis syndrome. Methods: This is a multicentre retrospective cohort study of 105 neonates with E-11 infection in China. Patients with haemorrhage-hepatitis syndrome (the severe group) were compared with those with mild disease. Clinical risk factors and early markers of haemorrhage-hepatitis syndrome were analysed. In addition, cytokine analysis were performed in selective patients to explore the immune responses. Results: In addition to prematurity, low birth weight, premature rupture of fetal membrane, total parenteral nutrition (PN) (OR, 28.7; 95% CI, 2.8-295.1) and partial PN (OR, 12.9; 95% CI, 2.2-77.5) prior to the onset of disease were identified as risk factors of developing haemorrhage-hepatitis syndrome. Progressive decrease in haemoglobin levels (per 10 g/L; OR, 1.5; 95% CI, 1.1-2.0) and platelet (PLT) < 140 × 109/L at early stage of illness (OR, 17.7; 95% CI, 1.4-221.5) were associated with the development of haemorrhage-hepatitis syndrome. Immunological workup revealed significantly increased interferon-inducible protein-10(IP-10) (P < 0.0005) but decreased IFN-α (P < 0.05) in peripheral blood in severe patients compared with the mild cases. Conclusions: PN may potentiate the development of E-11 associated haemorrhage-hepatitis syndrome. Early onset of thrombocytopenia and decreased haemoglobin could be helpful in early identification of neonates with the disease. The low level of IFN-α and elevated expression of IP-10 may promote the progression of haemorrhage-hepatitis syndrome.

15.
Clin Exp Pharmacol Physiol ; 50(6): 516-526, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36897043

RESUMO

Rabeprazole is a representative of proton pump inhibitors and widely used in anti-ulcer treatment. However, the effect of Rabeprazole on gut barrier function remains to be identified. In this study, we show that ZO-1 expression is decreased in patients receiving Rabeprazole by immunofluorescence (IF) analysis. Western blotting (WB) and real-time PCR (qPCR) results demonstrate that Rabeprazole treatment leads to a significant downregulation of ZO-1 expression through inhibition of the FOXF1/STAT3 pathway, leading to destroy barrier function, which illustrates a novel pathway that Rabeprazole regulates barrier function in gastric epithelial cells. Mechanistically, Rabeprazole treatment led to a downregulation of STAT3 and FOXF1 phosphorylation, leading to inhibit nuclear translocation and decrease the binding of STAT3 and FOXF1 to ZO-1 promoter, respectively. Most important, endogenous FOXF1 interacted with STAT3, and this interaction was dramatically abolished by Rabeprazole stimulation. Overexpression of STAT3 and FOXF1 in GES-1 cells reversed the inhibitory effect of Rabeprazole on ZO-1 expression, respectively. These finding extended the function of Rabeprazole and established a previously unappreciated mechanism by which the Rabeprazole/FOXF1/STAT3 axis facilitated ZO-1 expression to regulate barrier function, and a comprehensive consideration and evaluation was required in treatment of patients.


Assuntos
Células Epiteliais , Rabeprazol , Transdução de Sinais , Humanos , 2-Piridinilmetilsulfinilbenzimidazóis/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Rabeprazol/efeitos adversos , Rabeprazol/metabolismo , Fator de Transcrição STAT3/metabolismo , Estômago , Proteína da Zônula de Oclusão-1/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo
16.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36749634

RESUMO

Uncontrolled inflammation occurred in sepsis results in multiple organ injuries and shock, which contributes to the death of patients with sepsis. However, the regulatory mechanisms that restrict excessive inflammation are still elusive. Here, we identified an Ig-like receptor called signaling lymphocyte activation molecular family 7 (SLAMF7) as a key suppressor of inflammation during sepsis. We found that the expression of SLAMF7 on monocytes/macrophages was significantly elevated in patients with sepsis and in septic mice. SLAMF7 attenuated TLR-dependent MAPK and NF-κB signaling activation in macrophages by cooperating with Src homology 2-containing inositol-5'­phosphatase 1 (SHIP1). Furthermore, SLAMF7 interacted with SHIP1 and TNF receptor-associated factor 6 (TRAF6) to inhibit K63 ubiquitination of TRAF6. In addition, we found that tyrosine phosphorylation sites within the intracellular domain of SLAMF7 and the phosphatase domain of SHIP1 were indispensable for the interaction between SLAMF7, SHIP1, and TRAF6 and SLAMF7-mediated modulation of cytokine production. Finally, we demonstrated that SLAMF7 protected against lethal sepsis and endotoxemia by downregulating macrophage proinflammatory cytokines and suppressing inflammation-induced organ damage. Taken together, our findings reveal a negative regulatory role of SLAMF7 in polymicrobial sepsis, thus providing sights into the treatment of sepsis.


Assuntos
Sepse , Fator 6 Associado a Receptor de TNF , Animais , Camundongos , Inflamação/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Sepse/genética , Sepse/metabolismo , Fator 6 Associado a Receptor de TNF/genética
17.
Clin Immunol ; 248: 109260, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791943

RESUMO

Hand, foot, and mouth disease (HFMD) is a common children infectious disease caused by human enteroviruses. Most of the cases have minimal symptoms, however, some patients may develop serious neurological, cardiac complications, or even death. The pathological mechanism leading to severe HFMD is not clearly understood, and the immunological status of the individual patient may play an important role. Transcriptomes of peripheral blood mononuclear cells from EV71-infected patients (n = 45) and healthy controls (n = 36) were examined. Immune pathways were up-regulated in patients with mild disease symptoms (n = 11, M) compared to the healthy controls (n = 36, H), demonstrating an effective anti-viral response upon EV71 infection. However, in patients with severe symptoms (n = 23, S) as well as severe patients following treatment (n = 11, A), their innate and acquired immune pathways were down-regulated, indicating a global immunity suppression. Such immune suppression characteristics could thus provide an opportunity for early EV-71 infection prognosis prediction. Based on our cohort, an SVM model using RNA-seq expression levels of five genes (MCL1, ZBTB37, PLEKHM1P, IFNAR2 and YEATS2) was developed and achieved a high ROC-AUC (91·3%) in predicting severe HFMD. Meanwhile, qPCR fold-changes method was performed based three genes (MCL1, IFNAR2 and YEATS2) on additional cohort. This qPCR method achieved a ROC-AUC of 78.6% in predicting severe HFMD, which the patients could be distinguished in 2-3 h. Therefore, our models demonstrate the possibility of HFMD severity prediction based on the selected biomarkers that predict severe HFMD effectively.


Assuntos
Enterovirus Humano A , Doença de Mão, Pé e Boca , Doenças da Boca , Humanos , Criança , Lactente , Enterovirus Humano A/fisiologia , Leucócitos Mononucleares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Imunidade Adaptativa , China
18.
Vaccines (Basel) ; 11(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36680009

RESUMO

Human norovirus (HNV) is one of the emerging and rapidly spreading groups of pathogens and the main cause of epidemic viral gastroenteritis globally. Due to a lack of in vitro culture systems and suitable animal models for HNV infection, murine norovirus (MNV) has become a common model. A recent study showed that MNV activates NLRP3 inflammasome leading to pyroptosis. Jatrorrhizine (JAT) is a natural isoquinoline alkaloid isolated from Coptis Chinensis, which has been proven to have antibacterial, anti-inflammatory, and antitumor effects. However, whether JAT has an effect on norovirus gastroenteritis and the underlying molecular mechanism remain unclear. Here, we found that JAT could ameliorate NLRP3-N-GSDMD-dependent pyroptosis induced by MNV infection through inhibiting the MAPKs/NF-κB signaling pathways and decrease MNV replication in RAW264.7 macrophages, suggesting that JAT has the potential to be a therapeutic agent for treating norovirus gastroenteritis.

19.
Nat Commun ; 14(1): 478, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717589

RESUMO

A variety of intracellular bacteria modulate the host cytoskeleton to establish subcellular niches for replication. However, the role of intermediate filaments, which are crucial for mechanical strength and resilience of the cell, and in bacterial vacuole preservation remains unclear. Here, we show that Salmonella effector SopB reorganizes the vimentin network to form cage-like structures that surround Salmonella-containing vacuoles (SCVs). Genetic removal of vimentin markedly disrupts SCV organization, significantly reduces bacterial replication and cell death. Mechanistically, SopB uses its N-terminal Cdc42-binding domain to interact with and activate Cdc42 GTPase, which in turn recruits vimentin around SCVs. A high-content imaging-based screening identified that MEK1/2 inhibition led to vimentin dispersion. Our work therefore elucidates the signaling axis SopB-Cdc42-MEK1/2 as mobilizing host vimentin to maintain concrete SCVs and identifies a mechanism contributing to Salmonella replication. Importantly, Trametinib, a clinically-approved MEK1/2 inhibitor identified in the screen, displayed significant anti-infection efficacy against Salmonella both in vitro and in vivo, and may provide a therapeutic option for treating drug-tolerant salmonellosis.


Assuntos
Salmonella typhimurium , Vacúolos , Humanos , Proteínas de Bactérias/metabolismo , Citoesqueleto/metabolismo , Filamentos Intermediários/metabolismo , Salmonella typhimurium/genética , Vacúolos/metabolismo , Vimentina/metabolismo , Animais
20.
Redox Rep ; 27(1): 167-175, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35938579

RESUMO

BACKGROUND: The number of neutrophils is significantly reduced in myelodysplastic syndrome (MDS), but the molecular basis remains unclear. We recently found that miR-34a was significantly increased in MDS neutrophils. Therefore, this study aims to clarify the effects of aberrant miR-34a expression on neutrophil counts. METHODS: miR-34a mimics/inhibitor transfection were performed in neutrophil-like differentiated HL60 (dHL60) cells, and a FACSCalibur flow cytometer was used to measure ROS production and apoptosis. In addition, the Cdc42-WASP-Arp2/3 pathway inhibitor (ML141) and activator (CN02) treated the dHL60 cells, and then ROS production, apoptosis and related proteins expression were detected. And, luciferase reporter assay to verify the relationship of miR-34a and the Cdc42-WASP-Arp2/3 pathway. RESULTS: overexpression of miR-34a could induce ROS production and apoptosis, decrease the expression levels of DOCK8, p-WASP, WASP, Arp2, Arp3, and increase F-actin's expression. Meanwhile, knockdown of miR-34a could decrease ROS production and apoptosis, increase the expression of DOCK8, p-WASP, WASP, Arp2, Arp3, and decrease F-actin's expression. Immunofluorescence staining showed aberrant miR-34a and Cdc42-WASP-Arp2/3 pathway could induce F-actin membrane transfer. Luciferase reporter assay indicated that DOCK8 was a direct target gene of miR-34a. CONCLUSION: These data indicates miR-34a may induce neutrophil apoptosis by regulating Cdc42-WASP-Arp2/3 pathway-mediated F-actin remodeling and ROS production.


Assuntos
Actinas , MicroRNAs , Actinas/genética , Actinas/metabolismo , Apoptose/genética , MicroRNAs/genética , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...